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Abstract

Large multilayer neural networks trained with
backpropagation have recently achieved state-of-
the-art results in a wide range of problems. How-
ever, using backprop for neural net learning still
has some disadvantages, e.g., having to tune a
large number of hyperparameters to the data,
lack of calibrated probabilistic predictions, and
a tendency to overfit the training data. In prin-
ciple, the Bayesian approach to learning neural
networks does not have these problems. How-
ever, existing Bayesian techniques lack scalabil-
ity to large dataset and network sizes. In this
work we present a novel scalable method for
learning Bayesian neural networks, called proba-
bilistic backpropagation (PBP). Similar to classi-
cal backpropagation, PBP works by computing
a forward propagation of probabilities through
the network and then doing a backward computa-
tion of gradients. A series of experiments on ten
real-world datasets show that PBP is significantly
faster than other techniques, while offering com-
petitive predictive abilities. Our experiments also
show that PBP provides accurate estimates of the
posterior variance on the network weights.

1. Introduction

Neural networks (NNs) have seen a recent resurgence of
interest due to empirical achievements on a wide range of
supervised learning problems. In their typical usage, neural
networks are highly expressive models that can learn com-
plex function approximations from input/output examples
(Hornik et al.l [1989). Part of the success of NNs is due to
the ability to train them on massive data sets with stochastic
optimization (Bottou, [2010) and the backpropagation (BP)
algorithm (Rumelhart et al., [1986). This, along with faster
machines, larger datasets, and innovations such as dropout
(Srivastava et al., 2014) and rectified linear units (Nair &
Hintonl, 2010)), have resulted in successes for NNs on tasks

such as speech recognition (Hinton et al.l [2012; [Hannun
et al.| 2014)), computer vision (Krizhevsky et al.,|2012; |Wu
et al., 2015) and natural language processing (Collobert &
‘Weston, 2008} Sutskever et al., 2014]).

Despite all these successes, there are still some challenges
in learning NNs with backpropagation (BP). First, there are
many hyperparameters in BP-based stochastic optimization
that require specific tuning, e.g., learning rate, momentum,
weight decay, etc., each of which may be layer-specific.
With large data sets, finding the optimal values can take a
large amount of time, even with an efficient procedure such
as Bayesian optimization (Snoek et al., 2012)). Second, in
NNs trained with BP, we can only obtain point estimates
of the weights in the network. As a result, these networks
make predictions that do not account for uncertainty in the
parameters. However, in many cases these weights may
be poorly specified and it is desirable to produce uncer-
tainty estimates along with predictions. Finally, it is com-
mon practice to use a very large NN to flexibly fit data, and
then reign in overfitting using regularization terms, even if
a smaller network would be cheaper and easier to train.

A Bayesian approach to neural networks can potentially
avoid some of the pitfalls of stochastic optimization
(MacKay, |1992c). Bayesian techniques, in principle, can
automatically infer hyperparameter values by marginaliz-
ing them out of the posterior distribution or by determining
them via type II maximum likelihood (empirical Bayes).
Furthermore, Bayesian methods naturally account for un-
certainty in parameter estimates and can propagate this un-
certainty into predictions. Finally, Bayesian approaches are
often more robust to overfitting, since they average over pa-
rameter values instead of choosing a single point estimate.

Several approaches have been proposed for Bayesian learn-
ing of neural networks, based on, e.g., the Laplace approxi-
mation (MacKayl |1992c|), Hamiltonian Monte Carlo (Neal,
1995)), expectation propagation (Jylinki et al., |2014), and
variational inference (Hinton & Camp, [1993). However,
these approaches have not seen widespread adoption due
to their lack of scalability in both network architecture
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and data size. A notable exception is the scalable varia-
tional inference approach of |(Graves| (2011). However, this
method seems to perform poorly in practice due to noise
from Monte Carlo approximations within the stochastic
gradient computations. A different scalable solution based
on expectation propagation was proposed by |Soudry et al.
(2014). While this method works for networks with binary
weights, its extension to continuous weights is unsatisfying
as it does not produce estimates of posterior variance.

We describe a new approach for learning Bayesian neural
networks called probabilistic backpropagation (PBP) that
is fast and does not have the disadvantages of previous ap-
proaches. PBP works by propagating probabilities forward
through the network to obtain the marginal likelihood, be-
fore propagating backward the gradients of the marginal
likelihood with respect to the parameters of the posterior
approximation. Our experiments show that PBP is fast,
makes accurate predictions and also produces calibrated es-
timates of the posterior uncertainty in network weights.

2. Probabilistic neural network models

We describe a probabilistic model for data based on a feed-
forward neural network. Given data D = {x,,,yn}2_1,
made up of D-dimensional feature vectors x,, € R” and
corresponding scalar target variables y, € R, we as-
sume that each y, is obtained as y, = f(xn; W) + €n,
where f(-; W) is the output of a multi-layer neural network
with connections between consecutive layers and weights
given by W. The evaluations of this NN are corrupted by

additive noise variables ¢,,, where €, ~ N(0,y71).

The NN has L layers, where V; is the number of hid-
den units in layer [, and W = {W,}£ | is the collec-
tion of V; x (V;_1 + 1) weight matrices between the fully-
connected layers. The +1 is introduced here to account
for the additional per-layer biases. We denote the out-
puts of the layers by vectors {z;}},, where z is the
input layer, {z;};~,' are the hidden units and zj de-
notes the output layer, which is one-dimensional since
the y, are scalars. The input to the [-th layer is
defined as a; = W;z;_1/4/Vi—1 +1, where the fac-
tor 1/4/Vi_1 + 1 keeps the scale of the input to each
neuron independent of the number of incoming connec-
tions. The activation functions for each hidden layer
are rectified linear units (ReLLUs) (Nair & Hinton, [2010),
i.e., a(r) = max(z,0).

Let y be an N-dimensional vector with the targets y,
and X be an N x D matrix of feature vectors x,. The
likelihood for the network weights VV and the noise preci-

sion v, with data D = (X, y) is then

N
p(yIW,X,7) = [T N | Fxs W) (D

n=1

To complete our probabilistic model, we specify a Gaus-
sian prior distribution for each entry in each of the weight
matrices in V. In particular,

L VvV, Vi-1+1

VN =TTI] T Nwiilox™), @

I=1i=1 j=1

where w;;; is the entry in the i¢-th row and j-th col-
umn of W; and A is a precision parameter. The
hyper-prior for A is chosen to be a gamma distribution,
i.e., p(A) = Gam(\ | oy, B)) with shape o)) = 6 and in-
verse scale ) = 6. The values chosen for af) and 33
make this equivalent to having observed v = 12 samples
from A/(0,\~!) with empirical variance equal to 1. This
relatively low value for v compared to the large num-
ber N of observed data points makes this prior weakly-
informative. The prior for the noise precision + is also
gamma: p(y) = Gam(vy |y, B7). We assume that the y,,
have been normalized to have unit variance and, as above,
we fix o} = 6 and 8] = 6.

The posterior distribution for the parameters W, v and A
can then be obtained by applying Bayes’ rule:

p(y [W, X, 7)pW [ N)p(M)p(y)
p(y [ X)

where p(y | X) is a normalization constant. Given a new
input vector x,, we can then make predictions for its out-
put y, using the predictive distribution given by

POV, 7, A|D) = .3

p(ys | %0, D) = /p<y*\x*w, POV, v, A|D) dy dXdW, (4)

where p(y. | %0, W,7) = N (yx | f(x4),7). However, the
exact computation of p(W, v, A| D) and p(y« | x4) is not
tractable in most cases. Therefore, in practice we have to
resort to approximate inference methods. In the following
section we describe a technique for approximate Bayesian
inference in NN models that is both fast and also offers
excellent predictive performance.

3. Probabilistic backpropagation

Backpropagation (Rumelhart et al., [1986)) is by far the most
common method for training neural networks. This method
operates in two phases to compute a gradient of the loss in
terms of the network weights. In the first phase, the in-
put features are propagated forward through the network to
compute the function output and thereby the loss associ-
ated with the current parameters. In the second phase, the
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derivatives of the training loss with respect to the weights
are propagated back from the output layer towards the in-
put. These derivatives are used to update the weights using,
e.g., stochastic gradient descent with momentum.

In this section we describe a probabilistic alternative to
the backpropagation algorithm, which we call probabilis-
tic backpropagation (PBP). PBP does not use point esti-
mates for the synaptic weights in the network. Instead, it
uses a collection of one-dimensional Gaussians, each one
approximating the marginal posterior distribution of a dif-
ferent weight. PBP also has two phases equivalent to the
ones of BP. In the first phase, the input data is propagated
forward through the network. However, since the weights
are now random, the activations produced in each layer are
also random and result in (intractable) distributions. PBP
sequentially approximates each of these distributions with
a collection of one-dimensional Gaussians that match their
marginal means and variances. At the end of this phase,
PBP computes, instead of the prediction error, the loga-
rithm of the marginal probability of the target variable. In
the second phase, the gradients of this quantity with respect
to the means and variances of the approximate Gaussian
posterior are propagated back using reverse-mode differen-
tiation as in classic backpropagation. These derivatives are
finally used to update the means and variances of the pos-
terior approximation.

The update rule used by PBP is not the standard step in
the direction of the gradient of the loss made by the classic
backpropagation algorithm. PBP uses the following prop-
erty of Gaussian distributions (Minka} 2001)). Let f(w) en-
code an arbitrary likelihood function for the single synap-
tic weight w given some data and let our current be-
liefs regarding the scalar w be captured by a distribu-
tion ¢(w) = N(w|m,v). After seeing the data, our beliefs
about w are updated according to Bayes’ rule:

s(w) = Z7 fw) N'(w|m,v), (5)

where Z is the normalization constant. The updated be-
liefs s(w) usually have a complex form and need to be ap-
proximated with a simpler distribution. A common choice
is to approximate this posterior with a distribution that has
the same form as ¢. In this case, the parameters of the new
Gaussian beliefs ¢""(w) = N (w | m"",v"") that mini-
mize the the Kullback-Leibler (KL) divergence between s
and ¢"" can then be obtained as a function of m, v and the
gradient of log Z with respect to these quantities, namely

Odlog Z
om '

gev _ 2 | (g Z 2 ,0log Z
B om v

See (Minkal [2001), equations 5.12 and 5.13. These rules
match moments between ¢"% and s, guaranteeing that

m'™ =m+v

(6)

)

these two distributions have the same mean and variance.
These are the main update equations used by PBP. The next
section provides a detailed description of PBP, presenting
it as an assumed density filtering (ADF) method (Opper
& Winther, [1998) that uses some of the improvements on
ADF given by expectation propagation (Minkal [2001).

3.1. PBP as an assumed density filtering method

Probabilistic backpropagation is an inference method that
approximates the exact posterior of a neural network
with a factored distribution given by

qW, v, A) = H1L=1HZVL1 ;/;H N(wij.,l|mij,l,vij,l)]
x Gam(y |, f7)Gam(\ |a?, BY) . (8)

The approximation parameters m;;;, v, «”, 87, ot
and 3 are determined by applying an assumed density
filtering method (Opper & Winther, [1998; [Minkal [2001]))
on the posterior (3). For this, (§) is first initialized to
be uniform, that is, m;;; = 0, v;;; = 00, a¥ = ar =1
and 87 = B* = 0. After this, PBP iterates over the fac-
tors in the numerator of and sequentially incorporates
each of these factors into the approximation in (8). A gen-
eral description of this operation is given in the following
paragraph. Specific details on how to incorporate each type
of factor in (3] are given in the following sections.

There are two factors for the priors on v and A, a total
of H1L:1 Vi(Vi—1+41) factors for the prior on W given by
and finally, N factors for the likelihood . Let f(W, A\, 7)
be one of these factors. PBP incorporates f into the current
posterior approximation (§) by minimizing the KL diver-
gence between s(W,y,\) = Z7LfW, A\, v)gqW,~,\)
and ¢(W,v,)), with respect to the parameters of g,
where Z normalizes s and the g used to construct s is kept
constant during the minimization of the KL divergence.
This makes the new g approximate the product of the old ¢
and the factor f. The result is an approximation to an exact
online learning algorithm within the Bayesian framework
(Opper & Winther, [1998)).

3.2. Incorporating the prior factors into ¢

The first factors to be incorporated are the priors on y
and A. Since these factors have the same functional
form as (8), the resulting update for ¢ is straightfor-
ward: aew = 0, Brew = B> Qi = @ and By, = 587

After this, we sequentially incorporate the factors in (2).
In this case, the updates for m;;; and v;;; in (@) are given
by (6) and (7). Similar update rules can be obtained for the
parameters a* and 4 in (8). In particular,

0y = [22:27% (0> +1) o> —1.0] )

new
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2= (227 (02 41)/8> — 202708 T, (10)

where Z is the normalizer of s, that is, the product of the
factor that is being incorporated and ¢ and Z; and Z, are
the values of this normalizer when the parameter o in g
is increased by one and two units, respectively. The up-
date rules (9) and do not exactly minimize the KL di-
vergence since that would require matching the sufficient
statistics for A\ in ¢ and s, which does not have a closed
form. Instead, the rules above match the first and second
moments of A, which also produces good results (Minka,
2001} [Cowell et al, [1996). The derivation of (9) and
can be found in the supplementary material. One difficulty
when applying the update rules just described is that the
normalizer Z of s does not have a closed form. Neverthe-
less, we can approximate Z using

Z = [N(wiji |0, A" )gW, v, X) dW dy dX
= [ N(wiji |0, AN (wigr | miji, vij,i)
x Gam(A | a?, ) dwij; dX
= [T (w10, 8%/, 20N (wiji | M1, vig1)dwigg
~ [ N(wiji |0, 8/ (@ = )N (wigi | mij i, vigi)dwig
= N(mij]0,*/(a = 1) +viju). (1)

where T (- | u, 8,v) denotes a Student’s ¢ distribution with
mean p, variance parameter 3 and degrees of freedom v. In
the next-to-last line we have approximated the Student’s ¢
density with a Gaussian density that has the same mean and
variance. Finally, Z;, Z> and the gradients of log Z with
respect to m;;; and v;;; can be similarly approximated
by incorporating this approximation of Z into their expres-
sions. By plugging in the resulting quantities in (6), (7), (9)
and (I0) we obtain the new parameter values for g.

3.3. Incorporating the likelihood factors into ¢

After incorporating all the factors in (2)), PBP sequentially
incorporates the IV factors for the likelihood (I). As before,
updates for all the m;;; and v;;, in (8) are given by (6)
and (7)), respectively. The updates for @7 and 57 in (8)) are
given by (9) and (I0), respectively. To compute all these
updates we only require Z, the normalization constant
of s. However, this is difficult to compute, as it requires
integration of each likelihood factor with respect to the
distribution of the network output, i.e., z;, = f(x, | W),
when W ~ ¢. Let us assume that we have an approximat-
ing Gaussian with mean m?” and variance v** for the dis-
tribution of zy,. We can then approximate Z as

Z = [N(yn | f(xn [W),7" gV, 7, X) dW dry, dA
~ [ N(ynlzr,v )N (zeIm**, 0" )Gam(y | a7, B7)zrdy
= [T(yn 2,87/, 287 )N (2 |m*L,v*L) dzy,
~ N (yn |m™E, 87 /(@7 — 1) +v7F) (12)

where the first approximation in (I2) assumes that
zr = f(x; | W) ~ N(m?E,v*L) when W ~ ¢ and the
second approximates the Student’s ¢ density with a Gaus-
sian density that has the same mean and variance. An anal-
ysis of the error of this latter approximation can be found
in the supplementary material. This expression for Z can
be substituted into (6), (7, (O) and (T0) to obtain the new
parameters for q.

However, it remains to compute the mean and variance pa-
rameters m** and v** in (I2). This is done by propagating
distributions forward through the network and, when nec-
essary, approximating each new distribution with a Gaus-
sian. For this, let us assume that, when W ~ g, the out-
put of the [ — 1 layer z;_; is a diagonal Gaussian with
means and variances given by the V;_;-dimensional vec-
tors m#-* and v*-1, respectively. Furthermore, let a; =
Wz;_1/+/Vi—1 + 1, so that the marginal means and vari-
ances of a; (when WV is distributed as q) are

m?* = Mlmzlfl/\/ ‘/1_1 + 17 (13)

val = [(Mlo Ml)vzzﬂ + V[(l’nzlﬂ o mzl—l)
+ VlVZLil] /(szl + 1) (14)

where M; and V; are V; x (Vj_1 + 1) matrices whose
entries are given by my;; and v, for i=1,...,V
and 7 =1,...,V;_1 + 1, respectively, and o denotes the
Hadamard elementwise product. We again assume that the
entries in a; are independent Gaussian with means and vari-
ances given by the equations above. The Central Limit The-
orem states that a; is approximately Gaussian when V;_;
is large (Soudry et al) [2014). Let b; = a(a;), where a
is the rectifier linear activation function a(x) = max(0, x).
Then, the entries of b; are a mixture of a point mass at 0
(when the rectifier is saturated) and a Gaussian truncated at
0 (when the rectifier is in the linear regime). The mean and
variance of the i-th entry of b; are then

mPt = & (o)}, (15)

ot = mPd(—a) + () vl (1—vi(viteu)) , (16)
where

ay
[N -1} a ., My (=)
U, =mg AV Vi Q=g Vi B

and ® and ¢ are respectively the CDF and the density func-
tion of a standard Gaussian. When «; is very large and
negative the previous definition of +; is not numerically
stable. Instead, when a; < —30, we use the approxima-
tion y; = —ay — o Ty 20 3 as recommended by [Paquet
et al.|(2012). The output of the [-th layer, z;, is obtained by
concatenating b; with the constant 1 for the bias. We can
therefore approximate the distribution of z; to be Gaussian
with marginal means and variances

m* = [m" ; 1], vZ = [vP; 0]. (17)
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These concatenated means and variances reflect the lack
on uncertainty in the “bias unit’. Finally, to compute
the mean and variance parameters m*" and v** in (I2)
we initialize m? to [x;; 1] and v® to O and then ap-
ply (13), (@4), (15), and iteratively until we
obtain m* = mft and v** = v$F. This resembles the
forward pass of the standard backpropagation algorithm.
With m?*> and v*~, we can evaluate the log of Z as given
by (I2) and the gradients of that quantity that are required
to apply rules (6) and (7). This is similar to the reverse
mode differentiation used in backpropagation. We provide
a Theano-based (Bergstra et al.l 2010) implementation of
PBP at http://jmhl.org/, as well as a C version us-
ing the gradients given in the supplementary material.

3.4. Expectation propagation

Expectation propagation (EP) (Minka, 2001)) improves on
assumed density filtering by iteratively incorporating each
factor multiple times. On each pass over the list of fac-
tors, each factor is removed from the current posterior ap-
proximation, re-estimated, and then reincorporated. Each
iteration improves the accuracy of the posterior approxi-
mation. The disadvantage of EP over ADF is that it needs
to keep in memory all of the approximate factors, one for
each exact factor in the numerator of the posterior. This is
necessary, because each factor must be able to be removed
and updated. With massive data sets, the number of likeli-
hoods will be very large and it is not possible to store these
factors in memory. Instead, we incorporate these factors
multiple times, but without removing them from the cur-
rent approximation. This is equivalent to doing multiple
ADF passes through the data, treating each likelihood fac-
tor as a novel example. A disadvantage of this approach is
that it can lead to underestimation of the variance param-
eters in () when too many passes are done over the data.
Nevertheless, PBP is geared toward larger data sets, where
only a reduced number of passes over the data (fewer than
100) are possible. Note that we can afford to keep in mem-
ory an approximate factor for each exact factor in the prior
on the weights (2), since the number and size of these ap-
proximate factors are small. We therefore do one full EP
update of these approximate factors for the prior after each
ADF pass through the data. Details for this operation can
be found in the in the supplementary material. These ap-
proximate factors could also be updated more frequently,
for example, each time we do an ADF pass through a small
block of likelihood factors.

3.5. Implementation details

After incorporating the factors in (Z) for the first
time, we slightly perturb each mean parameter m;;;
in (15_?[) from the original value of 0 to be ¢y,
where €;;; ~ N(0,1/(V; + 1)). This is similar to the ran-

dom initialization of weights in NNs that is usually done
before learning with backpropagation. This operation di-
rects our inference method towards one of the multiple
symmetric modes of the posterior.

Because the computation of Z in is approximate, on
rare occasions the variance parameters for some weights
in (8) may be negative after incorporating one likelihood
factor. When this happens, we undo the update for those
weights and keep their previous mean and variance values.
A similar operation is often done in EP when negative vari-
ances arise in Gaussian approximate factors (Minka, 2001)).

4. Related Work

The gold standard method for Bayesian learning in neural
networks is Hamilton Monte Carlo (HMC) (Neal, [1995)).
However, this is a batch method that can perform poorly on
large data sets. HMC also requires problem-specific tun-
ing parameters such as the length and number of integra-
tion steps. One alternative to MCMC inference in neural
networks is the Laplace approximation (MacKay, [1992c).
However, the Laplace approximation requires computation
of the inverse Hessian of the log likelihood, which can be
infeasible to compute for large networks. Diagonal approx-
imations to the Hessian are possible, but performance can
deteriorate considerably. One alternative approach based
on EP is described by Jylanki et al.| (2014). This is a batch
method that is not expected to scale to large data sets and,
unlike PBP, it requires numerical quadrature. Jylanki keeps
in memory several approximate factors for each data point,
which is not feasible in large scale settings. Furthermore,
by using latent variables, this method breaks each likeli-
hood factor into additional sub-factors that are incorporated
into the posterior approximation in multiple disconnected
steps. PBP incorporates each likelihood factor in a single
step, which is expected to be more accurate.

A scalable variational inference (VI) method for neural net-
works is described by |Graves| (2011). This method maxi-
mizes a lower bound on the marginal likelihood of the NN.
The computation of this bound requires computing the ex-
pectation of the log of the numerator of the exact poste-
rior (3) under a factorized Gaussian approximation. This
is intractable in general, and so |Graves| (201 1)) proposes a
Monte Carlo approximation to compute the lower bound,
which is then optimized using a second approximation for
stochastic gradient descent (SGD). While SGD is a com-
mon approach to optimization of neural networks, the ini-
tial approximation leads to inefficient use of data. As a
result, the VI approach tends to generate poor solutions for
larger data sets over which only a few passes are possible.

The technique that is most closely related to PBP is
the expectation-backpropagation (EBP) method described
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Avg. Test RMSE and Std. Errors Avg. Test LL and Std. Errors ~ Avg. Running Time in Secs

Dataset N d VI BP PBP VI PBP VI BP PBP

Boston Housing 506 13 4.320+0.2914 3.228+0.1951 3.01440.1800 -2.903+0.071 -2.574+0.089 1035 677 13
Concrete Compression Strength 1030 8 7.12840.1230 5.97740.2207 5.667+0.0933 -3.391+0.017 -3.161+0.019 1085 758 24
Energy Efficiency 768 8 2.6461+0.0813 1.098+0.0738 1.80440.0481 -2.3914+0.029 -2.042+0.019 2011 675 19
Kin8nm 8192 8 0.099£0.0009 0.091+0.0015 0.098+0.0007 0.897+0.010 0.8964-0.006 5604 2001 156
Naval Propulsion 11,934 16 0.00540.0005 0.001-£0.0001 0.00640.0000 3.734+0.116 3.731-+0.006 8373 2351 220
Combined Cycle Power Plant 9568 4 4.32740.0352 4.182+0.0402 4.124+0.0345 -2.890+0.010 -2.837+0.009 2955 2114 178
Protein Structure 45,730 9 4.84240.0305 4.539+0.0288 4.732+0.0130 -2.992+0.006 -2.973+0.003 7691 4831 485
Wine Quality Red 1599 11 0.646+0.0081 0.645+0.0098 0.635+0.0079 -0.980+0.013 -0.968+0.014 1195 917 50
Yacht Hydrodynamics 308 6 6.88740.6749 1.182+0.1645 1.015+0.0542 -3.439+0.163 -1.634+0.016 954 626 12
Year Prediction MSD 515,345 90 9.034+NA 8.9324+NA 8879+ NA  -3.622+NA  -3.603+ NA 142,077 65,131 6119

Table 1. Characteristics of the analyzed data sets, average test performance in RMSE and log likelihood, and average running time.

by Soudry et al.| (2014), which proposes an online EP
technique for neural networks with sign activation func-
tions and binary weights, with an extension to continu-
ous weights. As with PBP, EBP also includes a forward
propagation of probabilities followed by a backward prop-
agation of gradients. However, there are three important
contributions of PBP with respect to EBP. First, EBP can
only model data with binary targets and cannot be applied
when the y,, are continuous (as in regression), while PBP
assumes continuous y,, and can be extended to binary tar-
gets using the same method as in EBP. Second, and more
importantly, EBP with continuous weights only updates the
mean parameters of the Gaussian posterior approximations.
In particular, the EBP update operation for each Gaus-
sian approximation includes only equation (6)) and does not
perform the corresponding update for the variance given
by (7). Therefore, EBP cannot produce accurate uncer-
tainty estimates, as it keeps the posterior variances constant
during the learning process. Note also that the “learning
rate” in (6) is the variance of the Gaussian approximation.
In effect, by not updating the variances, EBP makes inef-
ficient updates for the means. Finally, unlike probabilistic
backpropagation, EBP does not learn the hyperparameter
for the prior variance A~!. Instead, EBP keeps A~! fixed
to a large initial value.

5. Experiments

We evaluate PBP in regression experiments with publicly
available data sets and neural networks with one hidden
layer. In PBP we make probabilistic predictions for the
target variables by using (I2)), which approximates ().

5.1. Predictive performance

We first evaluate the predictive accuracy of PBP. Table
lists the analyzed data sets and shows summary statistics.
We use neural networks with 50 hidden units in all cases
except in the two largest ones, i.e., Year Prediction MSD
and Protein Structure, where we use 100 hidden units. We
compare PBP with the variational inference (VI) approach
described in Section [4| and with standard stochastic gradi-
ent descent via backpropagation (BP). These methods were
coded using Theano (Bergstra et al.,[2010).

Figure 1. Predictions made by each method on the toy data set.
The noisy observations are shown as black dots, the true data
generating function is displayed as a black continuous line and
the mean predictions are shown as a dark gray line. Credible in-
tervals corresponding to +3 standard deviations from the mean
are shown as a light gray shaded area.

The different methods, PBP, VI and BP, were run by per-
forming 40 passes over the available training data, updating
the model parameters after seeing each data point. The data
sets are split into random training and test sets with 90%
and 10% of the data, respectively. This splitting process
is repeated 20 times and the average test performance of
each method is reported. In the two largest data sets, Year
Prediction MSD and Protein Structure, we do the train-test
splitting only one and five times respectively. The data sets
are normalized so that the input features and the targets
have zero mean and unit variance in the training set. The
normalization on the targets is removed for prediction.

BP and VI have several hyperparameters that have to be
optimally adjusted to the data. These are learning rate and
momentum in BP and VI and weight decay in BP. We select
these hyperparameter values by maximizing the predictive
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Figure 2. Average test RMSE and standard errors in the active learning experiments with Boston Housing, Yacht and Energy data sets.

performance of each method on a validation set with 20%
of the training data. For this task we use Bayesian opti-
mization (BO) techniques (Snoek et al.l 2012). In partic-
ular, for each train-test split of the data, we use BO to se-
quentially evaluate the validation performance of 30 differ-
ent hyperparameter configurations. After that, an optimal
value for the hyperparameters is selected and used to fit the
model on the training set.

Table [T] shows the average test root mean squared error
(RMSE) for each method. On each data set, the results
of the best method are shown in bold. Overall, PBP and
BP perform best, with PBP obtaining the best results in 6
out of 10 data sets. Unlike BP, PBP automatically adjusts
its hyperparameters and does not require an expensive BO
search. VI performs rather poorly, evidently due to the use
of two stochastic approximations. First, VI approximates
the lower bound on the model evidence by sampling from
the variational approximation and second, VI further ap-
proximates that bound by subsampling the data. BP and
PBP only perform the second type of approximation.

Table [T] also shows the average test log-likelihood for VI
and PBP, and average running time for each method, in sec-
onds. PBP is considerably better than VI, which performs
rather poorly. BP and VI are very slow since they have to be
re-run 30 times to search for their optimal hyperparameter
values. The BO search in these methods also has a consid-
erable overhead in the smallest data sets. PBP is the fastest
method since it does not have to select any hyperparameter
values and is run only once.

5.2. Multiple hidden layers

A comparison of the test RMSE obtained by PBP and BP in
neural networks with up to 4 hidden layers can be found in
the supplementary material. The experimental protocol in
these experiments is the same as before. We use networks
with 50 units in each hidden layer, except in the datasets

Year and Protein, where we use 100. These results are sim-
ilar to those shown in Table [T with PBP obtaining usually
the best results with 2 hidden layers.

5.3. Toy data set

We further evaluate the predictive distribution obtained by
PBP in a toy data set generated by sampling 20 inputs x
uniformly at random in the interval [—4,4]. For each
value of = obtained, the corresponding target y is com-
puted as y = 23 + ¢, where €, ~ N(0,9). We fitted a
neural network with one layer and 100 hidden units to these
data using PBP. We compare PBP with VI and BP, using
40 training epochs in all these methods. We also compare
with a ground truth generated by Hamiltonian Monte Carlo
(HMC). HMC is implemented by modifying the MCMC-
stuff Matlab toolbox (Vanhatalo & Vehtari, 2006) to in-
clude rectified linear activation functions. We run HMC
by drawing 30,000 samples from the posterior distribution.

Figure [T] shows the predictions generated by each method.
PBP and BP are much closer to the ground truth HMC
than VI. Furthermore, BP and PBP perform similarly,
even though PBP automatically adjusts its hyperparameters
while BP has to use BO methods for this task.

5.4. Active learning

We performed another series of experiments to evaluate the
accuracy of the estimates of the posterior variance on the
weights produced by PBP. For this, we use an active learn-
ing scenario (Settles, [2009) since in this type of problems
it is necessary to produce accurate estimates of uncertainty
for obtaining good performance.

In these experiments, we used a neural network with a sin-
gle hidden layer and ten hidden units. We split each data set
into training and test sets with 20 and 100 data instances,
respectively, and pool sets with all the remaining data. PBP
is fitted using the training data and then, its performance is
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Dataset LA-R LA-A EP-R EP-A PBP-R PBP-A HMC-R HMC-A

Boston 9.600+£0.154 9.452+0.111 8.632+0.231 8.426+0.264 6.716£0.500 5.480+0.175 5.750£0.222  5.156+0.150
Concrete 16.8894+0.182 16.938+0.173 16.767+0.174 16.897+£0.151 12.417+£0.392 11.894£0.254 10.564+0.198 11.484+0.191
Energy 10.1104+0.075 10.135+0.070  3.6164+0.101  3.634+0.159 3.743+0.121 3.399+0.064 3.246+0.067 3.118+0.062
Kin8nm 0.2714£0.003  0.270+£0.002  0.2724+0.002  0.271£0.002  0.259+0.006 0.254+0.005 0.226+0.004  0.223+0.003
Naval 0.015+0.000  0.015+0.000 0.015+0.000 0.015£0.000 0.015+0.000 0.016+£0.000 0.013£0.000  0.012+0.000
Power Plant 17.195£0.120 17.306£0.149  8.234+£0.831 6.251£0.599 5.312+0.108 5.068+0.082  5.229+0.097 4.800+0.074
Protein 6.165+0.073  6.2274£0.088 6.118+0.074 6.151£0.077 6.133£0.141  5.903+£0.127 5.613+£0.089 5.727+0.090
Wine 0.843+0.011 0.829+0.010 0.836+0.010 0.832+0.009 0.945+0.044 0.809+£0.011 0.740+£0.011 0.749+0.010
Yacht 15.9264+0.409 15.463+0.310 15.173+0.214 15.4424+0.390 5.388+0.339 4.058+0.158 4.644+0.237 3.211+0.120

Table 2. Average test RMSE and standard errors in active learning.

evaluated on the test data. After this, one data point is col-
lected from the pool set and then moved into the training
set. The process repeats until 9 of these active additions to
the training set have been completed, that is, until we have
performed 10 evaluations on the test set. The entire pro-
cess, including the random data set splitting, is repeated 40
times. The pool data is initially lacking the target variables
and these become available only once the data is moved to
the training set. As before, we run PBP for 40 epochs.

We compare PBP with a ground truth obtained by a HMC
method in which we draw 500 samples from the posterior.
We also compare with the batch EP algorithm for neural
networks described by Jyldnki et al.|(2014). This method
uses nonlinear activation functions given by the standard
Gaussian CDF. We further compare with the Laplace ap-
proximation (LA) of MacKay/|(1992c) using the neural net-
work toolbox from Matlab with tanh nonlinearities. In LA
we approximate the Hessian of the unnormalized posterior
distribution with the Levenberg-Marquardt approximation
and assume a diagonal Hessian matrix. This allows LA to
scale to large data sets and larger networks. We compare
two versions of PBP, HMC, EP and LA. One in which the
data from the pool set is collected actively (PBP-A, HMC-
A, EP-A and LA-A) and another one in which the pool data
is collected uniformly at random (PBP-R, HMC-R, EP-R
and LA-R). We re-trained from scratch all the methods af-
ter each new addition to the training set from the pool set.

To actively collect data from the pool set we follow
the information-based approach described by MacKay
(1992a). The goal is to maximize the expected reduction
in posterior entropy that is produced by adding data to the
training set. This implies choosing the x that maximizes

H[Wv’% A | D] - ]Ey|x,DH[Wa’Y7 A | Du {va}} ) (18)

where H[-] is the differential entropy. Following [Houlsby
et al| (2012), we can rewrite by swapping the roles
of y and the model parameters W, v, A. We finally obtain

H[y | X, D] - EW,"/,)\ | DH[y ‘ W7 v, )‘7 X] . (19)

Since the last term in is constant, we select the x
that maximizes the entropy of the predictive distribu-
tion p(y|x,D). Therefore, all the methods select the
next x with highest predictive variance.

Table 2] shows the average test RMSE for each method at
the end of the data collection process. These results show
that the active learning approach HMC-A is significantly
better than the random approach HMC-R in the data sets
Boston, Energy, Power Plant and Yacht. In these data sets
we also see a significant improvement of PBP-A over PBP-
R. This indicates that PBP produces useful estimates of
posterior variance. In these experiments PBP is usually
better than EP and LA. LA performs poorly because it can-
not correctly select the hyperparameters A and ~, due to
the diagonal Hessian approximation, as also observed by
MacKay| (1992b)). PBP does not have this problem.

Finally, Figure [2| shows the evolution of the average test
RMSE for each method during the data collection process
in the problems Boston, Yacht and Energy. These plots
indicate that the improvements of PBP-A over PBP-R are
similar to those of HMC-A over HMC-R. Furthermore, we
can see that the active learning strategy does not work as
well in EP and LA as it does in PBP and HMC.

6. Conclusions and future work

We have presented probabilistic backpropagation (PBP), a
new algorithm for scalable Bayesian learning of neural net-
works. PBP uses a product of Gaussians to approximate
the posterior over weights. The parameters of these Gaus-
sians are updated in a two stage process similar to the one
used by the backpropagation algorithm. First, probabilities
are propagated forward through the network to obtain the
marginal likelihood and second, the gradients of this quan-
tity with respect to the Gaussian parameters are propagated
backwards. These gradients are finally used to update the
parameters of the approximation to the posterior distribu-
tion. Experiments on ten datasets show that PBP makes
accurate predictions. Furthermore, we also show that PBP
produces useful estimates of the posterior variance on the
network weights. In summary, PBP is a fast method with
state-of-the-art performance for Bayesian learning of neu-
ral networks. As future work we plan to address multi-
label and multi-class problems. We will also make PBP use
mini-batches and output estimates of the model evidence
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1 Derivation of the gradients

In this section we derive the gradient of the logarithm of the marginal likelihood, that is, log Z, with respect to the
means and variances of the network weights in the Gaussian approximation g. In traditional backpropagation we
have, for each neuron j, one variable §; containing the gradient of the network error with respect to the input or
activation for neuron j. In PBP, the corresponding algorithm is very similar, with the difference that we now have
two variables for each neuron j instead of only one. We have one variable 5}” that contains the gradient of log Z
with respect to the mean of the activation for neuron j. Additionally, there is another variable 47 that contains the
gradient of log Z with respect to the variance of the activation for neuron j.

The mean and variance of the output of unit j are defined as m? and v, respectively. The mean and variance
of the activation or input for unit j are defined as mj and v7, respectlvely We have that, becauseof the ReLU

activation function,
ms = 0(ay) [mf + [os;] ()

’U —m [m + \/7’)’3} aj —|-<I>(aj) ;-1(1 —'ng- —fyjaj), )

where v; = ¢(a;)/P(a;), aj = m$/,/v] and ¢ and ¢ denote the standard Gaussian pdf and cdf. For the single
neuron in the last layer we have that m7 = mj and v; = vf.
We have that mf and vj are given by

m = s 3
J \/71;) J
vj = ‘[ § 2 Abm vil[my ) + viol ) @)

1€I(J)

where I(j) is the set of neurons whose output is the input to neuron j, m;’ ; and v;”; are the mean and variances of
the weight connecting neurons ¢ and j. Therefore,
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We now compute the gradient of -y; and a;; with respect to mf and vf:
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We now define the variables 6;” and (5;? to be
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where the sum is over each neuron % to which neuron j sends signals. The above rules can be recursively written

as follows:
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Table 1: Average Test RMSE in the experiments with deep neural networks.

Dataset BP, BP, BP; BP, PBP, PBP, PBP; PBP,

Boston 3.22840.1951 3.185+0.2365 3.019+£0.1848 2.874+0.1570 3.014+0.1800 2.79540.1590 2.93840.1645 3.08840.1519
Concrete 5.97740.2207 5.39640.1273 5.568+0.1271 5.530+0.1390 5.667+0.0933 5.241+£0.1164 5.732+0.1075 5.956+0.1597
Energy 1.18540.1242 0.676+0.0367 0.628+0.0278 0.667+0.0321 1.80440.0481 0.903+0.0482 1.23740.0592 1.176+0.0552
Kin8nm 0.0914-0.0015 0.0734-0.0009 0.07140.0006 0.071£0.0009 0.098+0.0007 0.071£0.0005 0.073+£0.0007 0.07540.0008
Naval 0.001£0.0001 0.001+£0.0000 0.00140.0001 0.001£0.0001 0.0064-0.0000 0.003+0.0001 0.0104+0.0013 0.004+0.0011

Power Plant 4.182+0.0402 4.220+0.0744 4.11240.0378 4.184+0.0591 4.124+0.0345 4.028+0.0347 4.065+0.0382 4.075+0.0366
Protein 4.53940.0288 4.1884-0.0313 4.01440.0326 3.960+0.0110 4.688+0.0115 4.251£0.0153 4.094+0.0285 3.970+0.0376

Wine 0.645+0.0098 0.651+0.0108 0.6524+0.0101 0.650+0.0158 0.6351+0.0079 0.643+0.0077 0.6414+0.0086 0.637+0.0079
Yacht 1.182£0.1645 1.54240.1920 1.107£0.0863 1.265+0.1287 1.015+0.0542 0.848+0.0495 0.893+0.0991 1.711+£0.2288
Year 8.932ENA 8.976:NA 8.933£NA 9.045ENA 8.869+ NA 8.918£NA 8.874ENA 8.934£NA

Finally, we have that
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2 Results with neural networks including more than one hidden layer

We repeated the experiments from Section 5.1 in the main document for the methods BP and PBP, using neural
networks with 2, 3 and 4 hidden layers. We used networks with 50 units in each hidden layer, except in the datasets
Year and Protein, where we used 100. Table 1 shows the average test RMSE and the corresponding standard errors
obtained by PBP, and BP,, where x is the number of hidden layers in the network. PBP has the best overall
predictive performance, with PBP5 achieving the best results in 5 datasest. Note that the optimal number of hidden
layers in PBP is problem dependent. In datasets such as Wine and Year one single hidden layer is optimal, while
in Protein we find that 4 hidden layers is better.

3 Error in the second approximation in equation (12) in the main text

In this section we evaluate the error in the second approximation performed in equation (12) in the main document.
This approximation consists in replacing the Student’s ¢ density with a Gaussian density that has the same mean
and variance. This approximation becomes more and more accurate as the degrees of freedom in the Student’s ¢
density increase. This will often be the case as we iterate over the data and we reduce our uncertainty on the value
of the noise parameter . We evaluated the relative error in log Z caused by this approximation as PBP iterates over
the data of the Boston Housing dataset in the experiments of Section 5.1 in the main document. The left plot in
Figure 1 shows the error during the first 100 iterations of PBP over the individual datapoints. The right plot shows
the error during the last 100 iterations of the method. We can see that the error is very small in the second case. In
particular, at this stage we are highly confident on the value of the noise parameter v and the parameters o and
B7 in the posterior approximation take relatively high values. This increases the number of degrees of freedom of
the Student’s ¢ density in equation (12), what improves the quality of the Gaussian approximation.

4 List of approximations

In this section we list all the approximations performed by the method PBP. The list of approximations is

e We use expectation propagation (EP) to adjust a parametric approximation, given by equation (8) in the main
document, to the exact posterior distribution, given by equation (3) in the main document.

e In our implementation of EP, we refine the parameters o7, 37, o and 3* of the posterior approximation by
matching the first and second moments of X and . The KL divergence would be minimized by matching the
expectation of the sufficient statistics of a Gamma distribution, but this does not have an analytical solution.
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Figure 1: Relative error in the approximation of log Z as PBP iterates over the data of the Boston Housing dataset.
in the experiments of Section 5.1 of the main paper. Left, relative error during the first 100 iterations of the
method over the individual datapoints. Right, relative error during the last 100 iterations of the method. We can
see that the error is very small during the last iterations. At this stage we are highly confident on the value of the
noise parameter -y, the parameters «” and 57 in the posterior approximation take relatively high values and the
degrees of freedom of the Student’s ¢ density in equation (12) are high, what increases the quality of the Gaussian
approximation.

e We approximate the normalization constants in equations (11) and (12) of the main document by replacing
a Student’s ¢ density with a Gaussian density that has the same mean and variance.

e EP requires to keep in memory one approximate factor for each exact factor in the numerator of the posterior
distribution. With massive data the number of exact likelihood factors is very large and keeping in memory
all the corresponding approximate factors is inpractical. To avoid this, we do not keep these approximate
factors in memory and we do not remove them from the current approximation before processing each
datapoint. This is equivalent to doing multiple ADF passes through the data, treating each likelihood factor
as a novel example. A disadvantage of this approach is that it can lead to underestimation of the posterior
variance when too many iterations are done over the data.

5 Derivations of equations (9) and (10) in the main text

Let the Gamma density be defined as Gamma(z|a, 8) = 2>~ exp{—23}T' () ~1. We denote the normalization
constant of f(x)Gamma(z|a, 5) by H(«, ). In particular,

H(a7ﬁ):/f(x)Gamma(x|a,ﬁ) dx . (23)

Note that we explicitly write H as function of « and 8. Then we have that the first and second moments of the
normalized version of f(x)Gamma(z|«, 3) are given by

1 o f . I:H(a+1,ﬁ)a
fras | o) Camma(ala, §) de ==L o)
1 9 _H(a+2,B8)a(a+1)
7H(a,6) /x Gamma(z|a, 8) dx = H (o, §)5 (25)



Thus, each moment can be easily approximated given a procedure to approximate the normalization constant
H(a, 8). For this, we only have to substitute H(«, ), H(a + 1, 8) and H(« + 2, 8) in the previous expressions
with their corresponding approximations. Note that the mean and variance of Gamma(x|«, 3) are given by o/
and «/ 3%, respectively. We can then find the new parameters ™" and ™" of a Gamma distribution that has the
same mean and variance as the normalized version of f(x)Gamma(x|«, ) by solving the system of equations
given by

o™ H(a+1,0)a " H(a+2,B)a(a+1) _{H(a+1,ﬁ)a}2 26)
grev  H(e, )87 [Brev]? H(a,)p? H(a,B)p ’
Let Z = H(a,8), Z1 = H(a+ 1,8) and Z3 = H(«a + 2, 3). Then
o™ = (22,77 (a+1) /o —1.0] 7)
e = (227 (ot 1)/6 ~ 117 /8] (28)

6 EP updates for the approximate factors corresponding to the prior

The only prior factors that need to be processed multiple times using expectation propagation are the factors in
equation (2) in the main document. The other Gamma priors on A\ and  have the same functional form as the
posterior approximation g. This means that they need to be incorporated only once into ¢ since any removal and
posterior re-incorporation of these factors would not produce any improvement in g.

We re-write here the expression for the prior factors than need to be processed multiple times, that is, equation
(2) from the main document:

L V; Vii+1

pOVIN =[TIT TI VN(wijalo.x™"). (29)

I=1i=1 j=1
We also re-write here the expression for the posterior approximation g:

L VvV, Vica+1
aw, v, N = TTI] TI N(wijalmisi, vij) | Gamma(yla?, 87)Gamma(Aja®, 8*) . (30)

I=1i=1 j=1
We denote each exact factor in (29) by
Fija(wiga, ) = N (wij]0, A7) G
Each of these exact factors is approximated by a corresponding approximate factor given by
figa(wiga, N) = N (wijg|ij, 05,)Gamma(X| i, Bija) (32)

Initialliy all the fzﬂ are uniform, that is, m;;; = 0, ¥;5,; = 0o, &;;; = 1 and Bml = 0. EP starts to incorporate all
the f;;, into ¢ once it has already incorporated the Gamma priors for A and . The first time f;;; is incorporated
into ¢ we update f;;; and g as follows:

Miji =0, Uija = By/(ag — 1), (33)
miji =0, vie = By/(ag — 1), (34)
where o and () are the parameters of the Gamma prior on \. These rules guarantee the matching of means

and variances on w;;,; after approximating the Student’s ¢ density in equation (11) in the main document with a
Gaussian that has the same mean and variance.



On successive iterations, we refine fijJ by first removing this approximate factor from ¢ to obtain a cavity

distribution. This cavity is computed as the ratio of ¢ and fl] 1. The cavity marginal distribuion on w;;; and A is
therefore

g\ (wig0, ) = N (wig|m V3 0\ Gamma(Aay !, 817 (35)
where
.. -1 iJ i J
,U\Zj,l — |:’Uz;71l _ 617_7,1l:| , m\z],l = U\U;l [mij,lv;j,ll - mz],lf};}l} ) (36)
- i 0 -
Oé}\z], _ Oé)\ — Aij + 1’ }\U, — BA _ ﬁij,l» (37)

After this, we update the parameters of ¢ to match moments between g(w;;;, A) and the normalized version of
fwiji, )\)q\ij’l(wijyl, A). For this, we use expression (11) in the main text to approximate the normalization
constant of f(w;;;, A\)g\?" (w;;, \). This last step is obtained by replacing ¢ in equation (11) in the main text
with the cavity distribution. Equations (6), (7), (9) and (10) from the main document are then used to obtain the
new parameters my; i, Vsj,1, a? and 8 for the posterior aproximation. Finally, we update the parameters for the
approximate factor fml using

-1

~ -1 ij,l1—1 ~ ~ -1 g, \ig,l1—1
Vij1 = [%,z — [\ } ; Mije = Dija |migoyy —m N (38)

Gijy = o’ —ay 41, Biji = B — By (39)
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